
SDC & Form API, better late than
never

Florent Torregrosa
Grimreaper

Drupaler since 2011 (D6), professional since
2013. Tech expert at Smile

Community contributions:

● UI Suite ecosystem since 2021
● Active maintainer of 30+ projects
● Contrib and core patches
● French translation moderator
● Events co-organizer
● Former French Drupal association board member

2

https://www.drupal.org/user/2388214
https://www.smile.eu

Current situation

Photo by ELEVATE

https://www.pexels.com/fr-fr/photo/seau-en-plastique-bleu-1267361/

Form API , since Fall 2005 (Drupal 4)
Nested arrays, describing a form structure.

Declarative. Easy to type. Easy nesting.
Easy alteration.

Return value of:

● FormInterface::buildForm()

● PluginFormInterface::buildConfigurationForm()

● WidgetInterface::settingsform()

● WidgetInterface::formElement()

● …

4

return [

 'phone_number' => [

'#type' => 'tel',

'#title' => t('Your phone

number'),

],

 'actions' => [

'#type' => 'actions',

'submit' => [

 '#type' => 'submit',

 '#value' => t('Save'),

 '#button_type' => 'primary',

]

]

];

https://www.drupal.org/project/drupal/issues/29465

Render API , since Summer 2006 (Drupal 5)
Inspired by the Form API.

Return value of:

● LayoutInterface::build()

● FormatterInterface::view()

● FormatterInterface::viewElements()

● BlockPluginInterface::build()

● …

You can put (most) render
elements in a form.

5

return [

 "#theme" => "item_list",

 "#items" => [

 ["value" =>

 [

 "#theme" => "image",

 "#uri" => "/path/to/image"

]

]

]

]

https://www.drupal.org/project/drupal/issues/74326

SDC , since Spring 2023 (Drupal 10)
The front devs friendly Render API.

No PHP needed. UI focused &
reusable components.

Good stuff inside: Twig templating,
plugin discovery, render element, no
preprocesses…

SDC can replace most of render
elements (table, status_messages,
pager…) and hook themes
(breadcrumb, progress_bar,
links…).

6

https://www.drupal.org/node/3355112

Layout Builder + UI Patterns

SDC is changing the display building

7

Experience Builder

UI Suite’s Display Builder

Problem 1: Using SDC in a Form

Photo by Tembela Bohle

https://www.pexels.com/fr-fr/photo/photo-de-bouteilles-supplementaires-corona-sur-seau-1089932/

Components are made of slots and props

Slots: “areas” for free renderables
only, like other components.

Props: strictly typed data only, for
some UI logic in the template.

name: Card

description: "Cards are used to group and…"

group: "Data display"

slots:

 image:

title: Image

 title:

title: Title

 text:

title: Text

 actions:

title: Actions

props:

 type: object

 properties:

heading_level: {}

image_bottom: {}

9

Renderables are made of children & properties

Properties: Prefixed with “#”, data
used in the render logic.

Children: Not prefixed, free
renderables.

$build['my_details'] = [
 '#type' => 'details',
 '#title' => 'Example',
 '#open' => TRUE,
 'content' => [
 '#markup' => 'Example content' ,
],
];

10

Does it ring a bell?

✅ We can insert a form inside a component
slot
return [
 '#type' => 'component',
 '#component' => 'core_sdc_form:accordion',
 '#slots' => [
 'title' => 'Form in component accordion',
 'content' => $this->formBuilder()->getForm(...),
]
];

11

$form['normal'] = [
 '#type' => 'textfield',
 '#title' => 'Normal form element' ,
];
$form['component'] = [
 '#type' => 'component',
 '#component' => 'core_sdc_form:accordion' ,
 '#slots' => [
 'title' => 'Form in component accordion' ,
 'content' => [
 'form_element_in_component' => [
 '#type' => 'textfield',
 '#title' => 'Form element in
component',
],
],
],
];

❌ But we can't insert a component in a form

12

Displayed as expected but data not submitted!
FormBuilder::doBuildForm()
expects children, not #slots

property.

$form['component'] = [
 '#type' => 'component',
 '#component' => 'foo:accordion',
 'title' => 'Accordion title',
 'content' => [
 'form_element_in_component' => [
 '#type' => 'textfield',
 '#title' => 'Hi there',
],
],
];

$form['component'] = [
 '#type' => 'component',
 '#component' => 'foo:accordion',
 '#slots' => [
 'title' => 'Accordion title',
 'content' => [
 'form_element_in_component' => [
 '#type' => 'textfield',
 '#title' => 'Hi there',
],
],
],
];

Step 1: slots as render element children

13

In ComponentElement::preRenderComponent(), let’s put the children
(already processed by the form builder) into the slots.

Step 1: slots as render element children

14

✅ Form API is able to go through the render tree.

✅ Component element has its slots.

Step 2: Let’s leverage #name property

We still don’t get the values when
submitting the form.

Mismatch between slots hierarchy
and names generated by
FormBuilder from #parents

Let’s use #name explicitly instead

15

Step 2: Let’s leverage #name property
In FormBuilder::handleInputElement()

In FormStateValuesTrait::setValueForElement()

16

Problem 2:
We can't define form element with

SDC

Photo by ELEVATE

https://www.pexels.com/fr-fr/photo/pile-de-lot-de-reservoir-de-baril-d-argent-de-cylindre-1267328/

Why is it important?

Form elements are (long) PHP
classes instead of Twig + YAML.

It keeps the front dev away and are
hard to manage.

Let’s move those to the theming
scope.

However, SDC components are
stateless.

18

❌

The missing components

In a design system, (around) 20%
of components are form elements.

Checkboxes, date pickers, sliders,
input groups…

Today, they are skipped by the SDC
authors.

19

Example: Bootstrap Switches

Example: Material Search

https://getbootstrap.com/docs/5.3/forms/checks-radios/#switches
https://m3.material.io/components/search/overview

Step 1: Change in Render pipeline
A form element is a render element with 2 extra render properties:

● #input = True, added by ElementInfoManager if the element
implements FormElementInterface

● #name, added by the form builder from the parent when missing

So:

● ComponentElement must implements FormElementInterface
● We can leverage the #name property expectations already discussed

20

From an user point of view
A SDC form element is a SDC renderable with #name

Example:

[

 "#type" => "component",

 "#component" => "ui_suite_bootstrap:date",

 "#name" => "foo",

 "#default_value" => "2025-04-15",

 "#slots" => [],

 "#props" => [],

]

21

Step 2: Twig template additions
We inject a new variable with data needed for form processing:

● form_state.name (string)
● form_state.value (mixed)
● form_state.required (boolean)

More may be added later.

22

{% set id = id|default('mytextfield-' ~
random()) %}
{% set input_attributes =
create_attribute({
 type: 'text',
 name: form_state.name,
 id: id,
 value: form_state.value,
}) %}
<div{{ attributes.addClass('mb-3') }}>
 <label class="form-label" for="{{ id }}">
 {{ label }}
 </label>
 <input{{ input_attributes }}>
</div>

Input or wrapper template?
In general a Drupal form element uses 2 templates:

● The wrapper (form-element.html.twig for half of them) with label, errors &
description

● The input (input.html.twig, textarea.html.twig,
select.html.twig…)

After studying design systems (Bootstrap, Material, DSFR…), we decided
to target wrappers.

But still challengeable.

23

What will be the benefits?

Photo by
ELEVATE:

https://www.pexels.com/fr-fr/photo/photographie-de-mise-au-point-selective-de-personnes-ayant-un-toast-1269043/
https://www.pexels.com/fr-fr/photo/photographie-de-mise-au-point-selective-de-personnes-ayant-un-toast-1269043/

Benefit 1: Form API simplification

25

37 form elements in Core

4
with only applicative
logic (no rendering)

Item, LanguageSelect,
Submit & Value

26
Do we split them?

● UI logic (#theme,
#theme_wrapper &

#pre_render) to SDC
● App logic (#process,

::valueCallback() &

#element_validate)
kept in PHP classes

7
without applicative logic

Button, Date, Hidden,
ImageButton, Search, Tel
& VerticalTabs

❌ Not suitable for

SDC ✅ Convertible to

SDC

Benefit 2: Front dev empowerment

The front devs friendly Form API.

No PHP involved. UI focused &
reusable form components.

Part of the design system
implementation.

Business agnostic. Sharable in a
Drupal theme.

Testable out of context from a
component library.

26

Benefit 3: Form building with SDC

27

Work in progress
Core issues:

● #3494634: Compatibility between SDC and the Form API
● #3508641: Define form elements from SDC

Next steps:

● Test submit button with component
● Error message handling: transmit the state into the element & message if no #title
● Handle required on checkboxes and radios (backend side) (composite elements)
● Form Ajax API & Form states API
● ComponentElement: remove #slots usage completely
● Replacing existing form elements
● Handle #tree
● …

28

https://www.drupal.org/project/drupal/issues/3494634
https://www.drupal.org/project/drupal/issues/3508641

Questions?

Photo by Pixabay

https://www.pexels.com/fr-fr/photo/distributeur-de-biere-en-acier-inoxydable-159291/

