
 By @Florent_Torre - Drupal France Marseille meetup February 2023

Entity Access Password - migration and generalization of the Protected Node 
module



 By @Florent_Torre - Drupal France Marseille meetup February 2023

Entity Access Password - migration and generalization of the Protected Node 
module



1. Context
2. Features
3. Architecture
4. Problems encountered
5. Data migration
6. To go beyond
7. Demo



CONTEXT

Protected Node

LMU

Methodology



Context:

Protected Node

● Old module, created in 2007 on Drupal 5!

● Ported in Drupal 6 and then in development version for Drupal 7.

● One of the first modules I contributed to, starting on november 2013 with 

my mentor izus.

● The main goal of the module is to grant access to nodes given a password 

the user has to enter in a dedicated form when trying to access a protected 

node.

● Then around this comes other features more or less exotic like the 

password fork feature:

○ Given an URL like 

/protected-nodes?protected_pages=<nid1>,<nid2>,...&back=<url>

○ Depending on the entered password, the user will be redirected to 

one of the nodes.

https://www.drupal.org/u/izus


Context:

Protected Node

● The main alternative module of Protected Node is Protected Pages.

● The key difference between the two modules is:

○ In Protected Node, the password is associated to a node (or its 

bundle or a global password)

○ In Protected Pages, the password is associated to a path.

● So with Protected Pages you can also add a password to pages that are 

not nodes or even content entities like a View page or a path handled by a 

custom controller.

● But you can’t administer your password directly on your entity form.

https://www.drupal.org/project/protected_node
https://www.drupal.org/project/protected_pages


Context:

LMU

● End of 2021, I had been contacted by the Ludwig-Maximilians-Universität 

München, a university of Munich, which was willing to sponsorize the port 

of Protected Node for Drupal 9.

● In Germany, there is a high level of privacy, especially for children, 

teenagers and students.

● Use case: as the university provides to their students video recordings of 

their lessons, the students present in the classroom (may) appear on the 

videos, so the recording should only be accessible to the appropriate 

students.

https://www.lmu.de/
https://www.lmu.de/


Context:

LMU

University customizations:

● Creation of a system to grant access to user:

○ A professor can enter the students of its course, so those students 

do not have to enter any password, access is already granted.

● Creation of a mechanism of access inheritance:

○ Based on taxonomy terms, if given access to a taxonomy term, it 

grants access to all the associated nodes. For example tagging all 

the nodes related to a specific course for a specific year.

● Store successful password submissions in the database, not in the 

session.

○ So a user no more have to re-enter the password.

○ And the password of a node can be changed without having to 

communicate the new password to people who already got the 

access.

● Bypass password access for certains roles based on taxonomy



Context:

Methodology

Constraint: 20 work days to do the port!

1. Evaluation of the current features, which ones will be kept

2. Evaluation of the LMU features, which ones are enough generic and 

implementable in the available time.

3. Checking Protected Node issue queue for bugs or legitimate feature 

requests impossible to do with the current architecture of Protected Node 

to avoid being blocked again.



FEATURES

Database table

Global configuration

Per bundle configuration

Other features

LMU features



Features

11

Database table field Field type column

nid removed (automatically handled by 
the field API)

protected_node_is_protected is_protected

protected_node_show_title show_title

protected_node_hint hint

protected_node_passwd password

protected_node_passwd_changed removed

protected_node_emails removed

From custom database 
table to field storage



Features

12

Before After

Reports Removed

Global password Preserved

Password inheritance/behavior (global / bundle / entity) Field instance setting

Show password strength Removed (force enabled)

Show node titles by default Field widget setting

Allow author to enter a password hint Field widget setting

Protected Node email support Removed

Generate a random password if necessary Field widget setting

Protected Node Form:
● Always add a cancel link
● Other settings

● Removed
● Field label / Field formatter / view 

mode usage

Display Suite view modes Field instance setting

Protected Node actions:
● Clear sessions
● Other actions

● Removed
● Use Views Bulk Edit

Global configuration

https://www.drupal.org/project/views_bulk_edit


Features

13

Before After

Protected mode for nodes of this type Field instance default value or field 
widget setting

A default (global) password for nodes of this type Field instance setting

How to show the protected node fieldset Field widget setting

Per bundle 
configuration



Features

14

Before After

Private attachments support Preserved with support of Webform submissions by 
default

Token support Only one token remaining [entity:protected-label] (for the 
show title feature)

Flood support Preserved (using the user flood settings)

Autocomplete disabled Preserved (by default with Drupal core)

Fork Removed

Rules submodule Removed

Views submodule Removed (no more needed as the module is field 
based)

Search support (hiding info on indexation) Removed (you can configure your view modes as you 
want and index the fields you want with Search API, so 
you can index fields to have search results and choose 
how to display them in other view mode, protected or 
not)

Other features



Features

15

Before After

Access inheritance To do in custom development

Store access in user data Implemented

Allow to grant/revoke access Implemented

Bypass password access for certains roles based on taxonomy To do in custom development

LMU features



ARCHITECTURE



17

Architecture:

Settings and password 
storage

To have a generic module, it should:

1. not be limited anymore to nodes but become usable for any 
content entities

2. provide great flexibility/granularity

=> this should be managed by a new field type.

That way, it benefits of:

● Field storage
○ No more need of a custom table to store the data

● Field settings and field widgets plugins
○ No more need to alter node type and node forms

● Field formatters plugins
○ Display of the password form
○ Views integration



18

Architecture:

Access management

A first draft had been proposed by a community member but based 

on the hook_entity_access.

Problems:

● The hook_entity_access prevents the access to the content, 

but then also content in lists will not be present, so how does 

the visitor can have links to point to the content?

● This supposes to provide the password form in a dedicated 

URL or another system.

We want the content to be displayed normally except for some 

selected view modes where the user has to enter the password to 

see the content normally also in those view modes.



19

Architecture:

Access management

The Display Suite module has a feature that allows to select a view 

mode to display a content in this view mode instead of the “full” view 

mode when displaying the full page.

Knowing that, I checked how it was implemented and found out the 

hook_entity_view_mode_alter which allows to programmatically 

change the view mode a content entity is going to be displayed into.

So the access check can happen in this hook, to display either the 

expected view mode or the ‘password_protected’ view mode.

https://www.drupal.org/project/ds


20

Architecture:

Access checking

Regarding the limitations of the Protected Node module, the access 

checking part had to be highly flexible to have a clean default 

implementation and letting developers able to override it for custom 

needs.

Currently needing to have a check for access stored in session but 

also in user’s data.

=> this should be done using services that can be stacked to not 

override each other in a cumulative way.



21

Architecture:

Access checking

I took inspiration from core Breadcrumb system:

● Service tags and service collector
○ Multiple services, only one is triggered depending on 

conditions. Or all are triggered.
○ Order of execution controlled by the weight of the services.

=> this results in:

● One service tag to validate the password, the first service to 
validate the password grants the access

○ That way it is possible for example to validate the password 
against anything like a regex

● One service tag to store that the access had been granted, all 
services can be triggered to store that it is ok.

● One service tag to check if the user has access, the first service 
to grant the access stops the verification process.

=> Password validation, access checking and access storage are 
decorrelated.



PROBLEMS ENCOUNTERED



23

Problems 
encountered:

Field API

Creating a new field type is time consuming. It depends on the 
complexity of your field type, its settings. It can become tedious.

Because the field widget you are going to create will also be used in 
the field settings to configure the default value.

So you have to check that your field widget works:

● On the entity form
● On the field settings form
● (On the Views Bulk Edit form)



24

Problems 
encountered:

Field API

Second difficulty proper to the module: It is handling passwords… 
and passwords are saved hashed, so not possible to retrieve the 
password when returning on the form and populate default values 
of form elements.

=> Need to check if empty or not to override already saved 
password.

Separate logic of handling values between:

● massageFormValues() method of the widget
● preSave() method of the field type



25

Problems 
encountered:

Form API

The password confirm form element is a composite form element. 
Composed of 2 password form elements.

On the settings form or on an entity form, sometimes we want to 
hide this form element, for example when wanting to generate a 
random password.

Form API states features allows (among other stuff) to hide form 
elements based on conditions, but there is a core bug on password 
element.

=> The solution was to wrap the password confirm element in a 
container and to apply the states on it.

https://www.drupal.org/project/drupal/issues/1427838


26

Problems 
encountered:

Form API

When displaying the same form multiple times on the same page, 
even when having different form objects with different arguments 
value, when submitting a form, if there is an error, all the forms are 
marked in error.

This is due to a core bug which does not generate different form 
tokens and cache based on the arguments, only based on the form 
ID.

=> The solution was to have a form ID dependent of the entity the 
form was for, that way Drupal may distinguish the form that is 
submitted.

This required to declare the form has a service to be able to have 
the form object and manipulate it before passing it to the form 
builder service.



27

Problems 
encountered:

Cache

To preserve Drupal cache mechanism and avoid performance loss, a 
new cache context had been created,

It allows to check if it is the protected version of an entity that should 
be displayed for a view mode.

It has 2 values, 0 or 1, to avoid cache duplication.

The value is based on:
1. If the entity is password protected,
2. If the view mode being viewed is protected,
3. If the user has access to this entity.

That way even the protected version of an entity is cacheable.



28

Problems 
encountered:

Cache

But the problem of displaying a form is that it prevents anonymous 
cache (Page cache core module).

Fortunately Drupal has a mechanism to avoid this problem: the lazy 
builder

It allows to delay the rendering of an element of the page. Drupal in 
a first time put a placeholder instead and render that in a second 
time.

That way the page is cacheable, and when rendering only the 
placeholders are recomputed if needed. They also can benefit from 
the cache mechanism.



29

Problems 
encountered:

User data sub-module

The creation of the service to store the access in the user’s data was 
straightforward.

It was the creation of the UI to administer those data that was long:
● Forms to view, grant or revoke access:

○ globally
○ per bundle
○ per entity
○ from the user profile

● Access to those forms:
○ routes
○ menu links
○ menu tasks



30

Problems 
encountered:

Show title feature

When preventing access to content, you may want to also avoid to 
display the title of the content which can contain private data.

And this… is a nightmare!

Because the title of a content is handled separately multiple times 
during a page rendering:

● Breadcrumb
● Entity template

○ not manageable in the view mode configuration, natively in 
the Twig template

● HTML title of the page / Metatag
● Page title block



31

Problems 
encountered:

Show title feature

Solutions:
● Breadcrumb

○ Often on projects additional contrib modules manipulating the 
breadcrumb are added so not possible to handle that in a 
generic way

○ Do in custom code!
● Entity template

○ Hook_preprocess_node
○ Hook_preprocess_taxonomy_term
○ No hook needed for media entity because no hardcoded label 

in Twig template \o/
○ For other entity types, implements the appropriate hooks

● HTML title of the page / Metatag
○ Hook_preprocess_html
○ If there is Metatag, use the provided token that will handle the 

logic of displaying the title or not
● Page title block

○ Hook_preprocess_page_title



DATA MIGRATION



Data migration:
General notes

There is no automatic migration path provided from Protected Node.

As a migration is frequently the moment used to reorganize content structure and 

as it can be used to cleanup content and provide new passwords, it has been 

decided to not spend too much time on this point.

But:

● Examples of how to do a migration had been implemented and 

documented.

● As an hashed D7 password is still valid on D9, a change had been done in 

Protected Node to use the same hash mechanism as user account 

passwords. So by keeping the hashed password intact in your migration 

you can “preserve” your passwords.

https://www.drupal.org/docs/contributed-modules/entity-access-password/data-migration-from-protected-node
https://www.drupal.org/project/protected_node/issues/3260323


Data migration:
LMU 
specificities

LMU had already implemented a D7/D9 migration with the constraint of preserving 

the node IDs to keep some relationships.

Therefore in the sub-module dedicated to user data storage, the storage keys are 

obtained through dedicated methods on the storage service.

That way by default, keys related to entities use the entity UUID, but it is possible 

for LMU to override this service and use the entity ID.



TO GO BEYOND

Next steps

Some thoughts



To go beyond: None!

Entity Access Password is:

● Stable

● More generic

● Extensible

● Overridable

=> Maintenance only!

You can still provide features by providing MR with proper test coverage.

Or add features in separated modules extending Entity Access Password.

One drawback though: the hardcoded view mode machine name 

“password_protected”

A settings form should be introduced to get rid of this hardcoded configuration.

Next steps



To go beyond: With the user data backend sub-module, you can grant/revoke 

access to users without having them to enter a password.

This raises the concern of a more wider access API around access 

control lists without being related to password.

Also another point to explore is if the granularity/inheritance 

(global/bundle/entity) password could have been handle with a 

plugin system, but during the implementation I had the feeling that 

it would have been over engineering.

Some thoughts



DEMO



39

Demo 1. Installation and configuration on a node

a. Global settings

b. Field settings

c. Field widget settings

d. View mode & Field formatter settings

2. Session backend

3. User data backend



Thank you for your attention!
Do you have any questions?


