
Deploy your contents with 
Entity Share



Who am I? Florent Torregrosa

Drupal Tech expert at Smile.

Using Drupal since 2011.

Some contributions:

● Maintainer/Co-maintainer on 30+ projects
● Event co-organizer
● Patches
● French translations

Grimreaper on Drupal.org.

https://www.smile.eu/
https://www.drupal.org/u/grimreaper


Summary

1. Why sharing content?
2. Why the Entity Share module?
3. Entity Share’s architecture

a. JSON:API usage
b. Main modules and concepts
c. Import configuration
d. Ecosystem
e. Known problems and limitations
f. Perspectives and roadmap

4. Demo



1: Why sharing content?



1: Why sharing content?

Deploy content on multiple websites.

Either for:

● project architecture with content
hub

● cross-communications between 
different sites



1: Why sharing content?

In industrialization process

● Deploy content from preproduction 
to production (content staging), 
same as the content hub use case

● Retrieve content from production to 
development environments



2: Why the Entity Share module?



2: Why the Entity Share module?

Date context: end of 2016

Webfactory module: based on core Rest webservices, linked to the websites 
deployment feature (content sharing usage biased).

Deploy ecosystem: unstable, bound to workspace.

Acquia Content Hub: 3rd party, paid subscription.

Entity Pilot module: 3rd party, paid subscription (not known at this period).

https://www.drupal.org/project/webfactory
https://www.drupal.org/project/deploy
https://www.drupal.org/project/acquia_contenthub
https://www.drupal.org/project/entity_pilot


3: Entity Share’s architecture



3: Entity Share’s architecture
A: JSON:API usage

● Perfect to provide entities listing
● Easy to use and adapt (with JSON:API Extras)
● In Core

Entity Share provides an UI on top of JSON:API to allow one 
website to retrieve content from another website.



2 main sub-modules (both may be enabled on the same site).

3: Entity Share’s architecture
B: Main modules and concepts



Entity Share Server:

● Enable on the website that will provide the content
● Provides the channels system (inspired from the Webfactory module):

○ Prepare a JSON:API endpoint URL to call by the client website:
■ entity type
■ bundle
■ language
■ filters
■ sorts

○ Which users can access the channel (roles and/or specific users)
● Exposes some server website content structure to ensure client

website can retrieve data

3: Entity Share’s architecture
B: Main modules and concepts



Example of channel

3: Entity Share’s architecture
B: Main modules and concepts



Entity Share Client:

● Enable on the website that will pull the content
● Allows to set the websites on which to connect to

○ Authentication method is plugin based for extensibility
○ The Key module is supported for proper handling of credentials

● Allows to configure “import config” to control how content is imported
● Allows to pull content:

○ Form (individual content or channel)
○ Drush commands (channel)

● Stores the information of which content had been pulled from which
website and when in “Import entity status” content entities

3: Entity Share’s architecture
B: Main modules and concepts

https://www.drupal.org/project/key


During the import:

1. Check if an entity exists with this UUID
a. If no entity is found, create a new one
b. If an entity already exists, create or update the translation regarding the language in the JSON 

data
2. Store the UUID in the processed entities list to avoid infinite loop

More details when we will see the import process plugins in the next

chapter.

3: Entity Share’s architecture
B: Main modules and concepts



Example of a remote website 
configuration.

3: Entity Share’s architecture
B: Main modules and concepts



The pull form on the client website.

3: Entity Share’s architecture
B: Main modules and concepts



Example of listing of entity import statuses.

3: Entity Share’s architecture
B: Main modules and concepts



The version 3 (8.x-3.x) introduced two concepts/plugin system:

● Import config and import process plugins
● Import policies plugins

With the addition of the “Import entity status” content entities, it allowed to solve 
bugs inherent to the previous architecture and helped to implement new features 
in a maintainable way. Providing an extension system.

3: Entity Share’s architecture
C: Import configuration



Import configuration:

● Configure what happens and how during the import
● Unified way to control this behavior between UI and CLI
● Different behavior depending on your needs

Import process plugins:

● Inspired from Search API processor plugins
● Steps during import that triggers methods of enabled plugins
● Improved DX

3: Entity Share’s architecture
C: Import configuration



Example of import config configuration.

3: Entity Share’s architecture
C: Import configuration



Import policies:

● Declared as YAML plugins
● Allow to “mark” imported content in the related “import entity status” entity
● So then contrib or custom code can react depending on the import policy
● In Entity Share:

○ Default: no special behavior
○ Create only: use the related import processor to skip updating already imported entities
○ Locked editing: disable the edit form on the client website

3: Entity Share’s architecture
C: Import configuration



It allowed to:

● Fix status detection from the server website
● Select recursion depths for entity reference
● Skip synchronization of imported entities (CLI only before)
● Select revision creation
● Prevent edition of shared entities
● Allow shared entities to be updated on client website
● Pull content in a language not enabled
● Parse RTE/link/block fields to get referenced entities like for entity reference 

fields
● And many more improvements!

3: Entity Share’s architecture
C: Import configuration



Entity Share Async (sub-module): to mark content to be pulled later by a queue 
during cron execution.

Entity Share Diff (sub-module): provides a basic diff feature on the pull form.

Entity Share ECA (sub-module): integration with the ECA module.

Entity Share Lock (sub-module): prevents to edit content once imported.

Entity Share Cron: provides an UI to configure frequency of automated pull of 
channels. For more complex usage, use custom code.

Entity Share Websub: allows the client websites to “subscribe” for specific 
content. When the content is changed, the server website will send a notification 
and all subscriber websites will (almost) instantly pull the changed content.

And more!

3: Entity Share’s architecture
D: Ecosystem

https://drupal.org/project/eca
https://www.drupal.org/project/entity_share_cron
https://www.drupal.org/project/entity_share_websub
https://www.drupal.org/project/entity_share/ecosystem


● Intensive usage of JSON:API Extras to avoid core limitations or handle special 
fields.

● Implementation relies on some JSON:API internal classes (#2939827)
● To avoid side effects, config entities and users are not handled.
● Push form (#2856715):

○ Impossible to PATCH translations (JSON:API)
○ Impossible to PATCH file field (JSON:API)

3: Entity Share’s architecture
E: Known problems and limitations

https://www.drupal.org/project/entity_share/issues/2939827
https://www.drupal.org/project/entity_share/issues/2856715


Stable release:

● Path alias update handling (#3107278)
● Infinite loop in special fields (#3265613)

V4:

● D10 preparation (#3248631, #3251411)
● User sharing (#3175111)

3: Entity Share’s architecture
F: Perspectives and roadmap

https://www.drupal.org/project/entity_share/issues/3107278
https://www.drupal.org/project/entity_share/issues/3265613
https://www.drupal.org/project/entity_share/issues/3248631
https://www.drupal.org/project/entity_share/issues/3251411
https://www.drupal.org/project/entity_share/issues/3175111


4: Demo

http://www.youtube.com/watch?v=TyJ9qQ85Cqo


Thank you

To our wonderful sponsors, our awesome community and fantastic volunteers!

Platinum sponsors



Thank you

Gold sponsors

Silver sponsors



Stay in touch

#ddd2022 on Drupal slack

@drupaldevdays

/drupaldevdays


