Deploy your content with Entity Share

BoF Solutions for content deployment by @Florent_Torre
DrupalCon Amsterdam 2019

1.

2

4.

Why sharing content?
* The 2 main use cases of sharing content
Why the Entity Share module?

= Differences with the Webfactory module
= Differences with the Deploy ecosystem

Demo

WHY SHARING CONTENT ?

IN CONTEXT

SMILE’

THE 2 MAIN USE CASES OF SHARING CONTENT

DEPLOY CONTENT ON MULTIPLE WEBSITES IN INDUSTRIALIZATION PROCESS

THE 2 MAIN USE CASES OF SHARING CONTENT

IN INDUSTRIALIZATION PROCESS

DEPLOY CONTENT ON MULTIPLE WEBSITES

mEjther architecture with content hub

BQOr cross-communications between different sites

THE 2 MAIN USE CASES OF SHARING CONTENT

DEPLOY CONTENT ON MULTIPLE WEBSITES IN INDUSTRIALIZATION PROCESS

mDeploy content from preproduction to production
(content staging), same as the content hub case

mRetrieve content from production to development
environments

\&,
%f

S
4

&

WHY
ENTITY SHARE?

ALTERNATIVES
DISCOVERY

SMILE

IN SHORT

= Created in 2001

= PHP

= 100% developed by the
community (3000)

Very big ecosystem,
composed from a wide
range of actors in size and
type

FORCES

CHALLENGES

Contrib modules
= Webfactory
= Deploy

Acquia has a turnkey
solution for

= Websites creation
= Websites cloning
= Sharing users

= Sharing content

The product Acquia

Content Hub is binding

= Content storage outside
of Drupal

= Non-obvious usage

= High costs

WEBFACTORY MODULE LIMITATIONS

Allows multi-site management from a central website

Facilitates the deployment of new sites

= Deploy a new “profile” directly from the backoffice

Sharing content from the central website
= Share entities: node

= A’channel’ mechanism allows only certain entities
to be shared at certain websites

Usage of Core webservices

THE DEPLOY ECOSYSTEM

Pushed by the community

Quite unstable

= At least at the beginning of 2017
Binding at the workflow level

More for content staging

ShMILE

JSON:API USAGE

=To provide entities listings

=More stable and documented than GraphQL (At the
beginning of 2017)

mAt the beginning of 2017, already an initiative for
JSON:API to become a Core module

EEasy to use

12(@

public function extractEntity(array $data) {
// Format JSON as in
// JsonApiDocumentToplevelNormalizerTest:testDenormalize).
$Sprepared_json = |
‘data’ => [
'type' => $datal'type'],
‘attributes' => $datal‘attributes’],
],
K
$parsed_type = explode(--, $datal'type'D);

return
$this->jsonapiDocumentToplLevelNormalizer->denormalize($prepared_json,
NULL, ‘api_json’ [
'resource_type' => $this->resourceTypeRepository->get(
$parsed_typelol,
$parsed_typelil
),
D,
}

13£j

ARCHITECTURE: 2 SUB-MODULES

THE 2 SUB-MODULES MAY BE ENABLED ON
THE SAME SITE.

Entity share server

= Activate on the website that will provide the
contents

= Provides the channel system

= Prepare a JSON:API endpoint URL to call by the
client website: entity type, bundle, language,
filters, sorts

» Plus listing of channels according to the
authorized user

Entity share client

= Activate on the website that will pull (or push)
content

= Allow to set the websites on which to connect to

= Provides a pull form (and push form but on an
experimental branch)

ARCHITECTURE: GLOBAL VIEW OF THE PROCESS

WHEN PULLING, FOR EACH SELECTED ENTITY

Check if an entity exists with this UUID
= If no entity is found, create a new one

= |f an entity exists, create or update the translation
regarding the language in the JSON data.

Store the UUID in the processed entities list
to avoid infinite loop

Manage entity reference fields

= For each “relationship’ (JSON;API) field, request the

endpoint showing the list of entities referenced by
the neld

= For each of these entities, do the initial process
= Put the ids of the processed entities in the entity
reference field value
Manage physical files

= |If the entity is a file, use its properties (URI) to get
the content of the file

Entity Share async (sub-module)

= To mark content to be synced later by a
queue during cron execution

Entity Share cron (separated project)
= https./www.drupal.org/project/entity_sh

are_cron

= Provides an Ul to configure frequency of
automated pull of channels

= For more complex usage, there is an
example module in Entity Share:
entity_share_client_test

163;9§i

https://www.drupal.org/project/entity_share_cron
https://www.drupal.org/project/entity_share_cron

KNOWN PROBLEMS

Workaround for Core limitation on link fields
with internal link values: Use JSON:API Extras

Metatag field breaks the import (#3666762)

Not working when server website is behind
HTTP authéntication (#2856713)

Implementation relies on some JSON:API
internal classes (#2939827)

Support of Dynamic Entity reference field is
broken since’ JSON:API 2.x (#3056102)

https://www.drupal.org/project/entity_share/issues/3060702
https://www.drupal.org/project/entity_share/issues/2856713
https://www.drupal.org/project/entity_share/issues/2939827
https://www.drupal.org/project/entity_share/issues/3056102

LIMITATIONS
To avoid side effects, config entities and users
are not handled

Impossible to import non-translatable entities
(#2866220)

Impossible to import content in a language not
enabled (#3064328)

Push form (#2856715):
= |mpossible to PATCH translations (JSON:API)
= |mpossible to PATCH file field (JSON:API)

https://www.drupal.org/project/entity_share/issues/2996220
https://www.drupal.org/project/entity_share/issues/3064328
https://www.drupal.org/project/entity_share/issues/2856715

Better Pull form . : :
#2891613, #285% RO
Avoid to synchronize already synced entities
(#3080629, #3077976, #3009258)

Parse RTE to get referenced entities (#3056911) :
= Entity embed
= Linkit
Parse Link fields to get referenced entities (#3064276)

Allow an entity to be updated locally after being
synchronized once (#2975806)

Compatibility with Block field (#3664333)
Manage Pathauto behavior (#3664326)

Better channel form (#2856717)

https://www.drupal.org/project/entity_share/issues/3077808
https://www.drupal.org/project/entity_share/issues/3077810
https://www.drupal.org/project/entity_share/issues/3077815
https://www.drupal.org/project/entity_share/issues/2891653
https://www.drupal.org/project/entity_share/issues/2856719
https://www.drupal.org/project/entity_share/issues/3064252
https://www.drupal.org/project/entity_share/issues/3080629
https://www.drupal.org/project/entity_share/issues/3077976
https://www.drupal.org/project/entity_share/issues/3009258
https://www.drupal.org/project/entity_share/issues/3056911
https://www.drupal.org/project/entity_share/issues/3064276
https://www.drupal.org/project/entity_share/issues/2975806
https://www.drupal.org/project/entity_share/issues/3064331
https://www.drupal.org/project/entity_share/issues/3064320
https://www.drupal.org/project/entity_share/issues/2856717

ROADMAP

Priority 1:
#2909022
Priority 2:
#3060694
#2930827
Priority 3: : k
N

ALL THE DETAILS ON THE PROJECT PAGE
AND IN THE MODULE ISSUES QUEUE

https://www.drupal.org/project/entity_share/issues/2909022
https://www.drupal.org/project/entity_share/issues/3060694
https://www.drupal.org/project/entity_share/issues/2939827

Entity Share V2?:

= Availability to have multiple bundles per channel
(JSON:API Cross Bundles)

= System of configurable plugins to control behavior:
= Depth of handled relationships
= Sync all translations at once
» Parse RTE
= Parse Link field

See this issue to give and discuss the ideas.

https://www.drupal.org/project/jsonapi_cross_bundles
https://www.drupal.org/project/entity_share/issues/3082611

DEMO

SMILE

Thanks for your attention!

And thanks to all the contributors!

SMILE

